"Good" and "Bad" Diversity in Majority Vote Ensembles

نویسندگان

  • Gavin Brown
  • Ludmila I. Kuncheva
چکیده

Although diversity in classifier ensembles is desirable, its relationship with the ensemble accuracy is not straightforward. Here we derive a decomposition of the majority vote error into three terms: average individual accuracy, “good” diversity and “bad diversity”. The good diversity term is taken out of the individual error whereas the bad diversity term is added to it. We relate the two diversity terms to the majority vote limits defined previously (the patterns of success and failure). A simulation study demonstrates how the proposed decomposition can be used to gain insights about majority vote classifier ensembles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examining the Relationship Between Majority Vote Accuracy and Diversity in Bagging and Boosting

Much current research is undertaken into combining classifiers to increase the classification accuracy. We show, by means of an enumerative example, how combining classifiers can lead to much greater or lesser accuracy than each individual classifier. Measures of diversity among the classifiers taken from the literature are shown to only exhibit a weak relationship with majority vote accuracy. ...

متن کامل

Examining the Relationship Between Majority Vote Ac - curacy and Diversity in Bagging and

Much current research is undertaken into combining classifiers to increase the classification accuracy. We show, by means of an enumerative example, how combining classifiers can lead to much greater or lesser accuracy than each individual classifier. Measures of diversity among the classifiers taken from the literature are shown to only exhibit a weak relationship with majority vote accuracy. ...

متن کامل

On Voting Ensembles of Classiiers (extended Abstract)

We study the classiication ability of majority-vote ensembles of classiiers. A majority ensemble classiies a pattern by letting each member of the ensemble cast a single vote for the correct class and decides according to a simple majority or a special majority vote. We give upper and lower bounds on the classiication performance of a majority ensemble as a function of the classiication perform...

متن کامل

Ensembles of nearest neighbour classifiers and serial analysis of gene expression

In this paper, we represent experimental results obtained with ensembles of nearest neighbour classifiers on the binary classification problem of cancer classification using serial analysis of gene expression (SAGE) data. Nearest neighbours are selected as classifiers since they were rarely employed in building ensembles because their predictions are stable to small perturbations of data, which...

متن کامل

Online approach to handle concept drifting data streams using diversity

Concept drift is the trend observed in almost all real time applications. Many online and offline algorithms were developed in the past to analyze this drift and train our algorithms. Different levels of diversity are required before and after a drift to get the best generalization accuracy. In our paper, we present a new online approach Extended Dynamic Weighted Majority with diversity (EDWM) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010